
Equation of state near the first order 
phase transition point of SU(3) gauge 

theory using gradient flow

M. Shirogane
Niigata University

WHOT-QCD Collaboration
S. Ejiri, R. Iwami, K. Kanaya, M. Kitazawa, 

H. Suzuki,Y. Taniguchi, T. Umeda

2018/7/22-29, Lattice 2018＠Michigan
1



Introduction

Three methods for the Equation of State.
1. Integral method

2. Derivative method

3. Gradient flow method 
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In this talk, we focus on the gradient flow method.
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New method!

𝑇−1 = 𝑎𝑡𝑁𝑡
𝑉 = 𝑎𝑠𝑁𝑠

3

𝑎: lattice space
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Gradient flow method for EoS

Gradient flow   [Narayanan-Neuberger (2006), Lüscher (2009-)]

Energy Momentum Tensor by gradient flow 
[H. Suzuki (2013)]

Test in quenched-QCD   [Flow QCD (2014,2016)]

Pressure and energy density are consistent with those by the 
integral method.

Application to Full QCD EoS by GF  [Suzuki & Makino (2014)]

Test in Full QCD   [WHOT QCD (2016-)]

Gradient flow method for EoS is in the stage of development.
In this study, we want to confirm the usability and reliability of the 

gradient flow method.
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We calculate gaps of energy density and pressure
at the first order phase transition of SU (3) lattice gauge theory.

Cold phase
pressure

Hot phase
pressure

Pressure: balance
Because two phases coexist at 𝑇𝑐, the 
pressure in the hot and cold phases must 
be balanced.

Phase
transition

Latent heat
The latent heat is the most important 
and well-defined quantity at 𝑇𝑐.

The lattice spacing is given by 𝑇𝑐 =
1

𝑎𝑡𝑁𝑡
.

Latent heat and pressure gap
To test the gradient flow method.

Compare: results by the derivative method.

Very good quantities
to test the new method.
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8𝑡

Gradient flow

𝜕t𝐵𝜇 𝑡, 𝑥 = 𝐷𝜈𝐺μν 𝑡, 𝑥

𝐵𝜇 𝑡 = 0, 𝑥 = 𝐴𝜇 𝑥 (original gauge field)

𝐺𝜇𝜈 𝑡, 𝑥 = 𝜕𝜇𝐵𝑣 𝑡, 𝑥 − 𝜕𝜈𝐵𝜇 𝑡, 𝑥 + 𝐵𝜇 𝑡, 𝑥 , 𝐵𝜈 𝑡, 𝑥

Flowed field strength 𝐺𝜇𝜈 𝑡, 𝑥

Flow equation (Diffusion equation)

Solving the flow equation, the gauge fields are smeared.

Introduce fictitious time 𝑡.

Flowed gauge field 𝐵𝜇 𝑡, 𝑥

Initial condition
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Gradient flow 8𝑡

ÅWe may view the flowed field 𝐵𝜇 as a smeared  𝐴𝜇 over a 

physical range 8𝑡.
Å It was shown that expectation values of operators in 

terms of 𝐵𝜇 have no UV divergence at finite 𝑡 and these 

are independent of the lattice regularization in 𝑎 → 0.
ÅThe gradient flow defines a physical renormalization 

scheme, which can be calculated directly on the lattice.

ÅWhen flow time 𝑡 increases, 𝑎/ 𝑡 decreases for each 
fixed 𝑡. Thus, the discretization error may become smaller.
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Calculating Energy Momentum Tensor

𝑓𝑎𝑐𝑑𝑓𝑏𝑐𝑑 = 𝐶2 𝐺 𝛿𝑎𝑏 tr 𝑇𝑎𝑇𝑏 = −𝑇 𝑅 𝛿𝑎𝑏

H. Suzuki [PTEP 2013, 083B03 (2013)]

𝑇𝜇𝜈
𝑅 𝑥 ≡ 𝑐1 𝑡 𝐺𝜇𝜌 𝑡, 𝑥 𝐺𝜈𝜌 𝑡, 𝑥 −

1

4
𝛿𝜇𝜈𝐺𝜌𝜎 𝑡, 𝑥 𝐺𝜌𝜎 𝑡, 𝑥

+𝑐2 𝑡 𝛿𝜇𝜈𝐺𝜌𝜎 𝑡, 𝑥 𝐺𝜌𝜎 𝑡, 𝑥 + ⋯

𝑐1 𝑡 =
1

ҧ𝑔 𝜇 2
− 𝑏0 log 𝜋 −

1

4𝜋 2

7

3
𝐶2 𝐺 −

3

2
𝑇 𝑅 𝑁𝑓

𝑏0 coefficient of beta function.

Perturbative matching coefficients
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Energy density and pressure are given by

Conventional combinations of 𝜖 and 𝑝: 
𝜖−3𝑝

𝑇4
, 
𝜖+𝑝

𝑇4
. 

𝐺𝜇𝜈𝐺𝜇𝜈 is calculated by two alternative

operators of clover and plaquette.

𝑇00 = 𝜖 𝑇11 + 𝑇22 + 𝑇33
3

= 𝑝

Calculating Energy Momentum Tensor

H. Suzuki [PTEP 2013, 083B03 (2013)]

𝑇𝜇𝜈
𝑅 𝑥 ≡ 𝑐1 𝑡 𝐺𝜇𝜌 𝑡, 𝑥 𝐺𝜈𝜌 𝑡, 𝑥 −

1

4
𝛿𝜇𝜈𝐺𝜌𝜎 𝑡, 𝑥 𝐺𝜌𝜎 𝑡, 𝑥

+𝑐2 𝑡 𝛿𝜇𝜈𝐺𝜌𝜎 𝑡, 𝑥 𝐺𝜌𝜎 𝑡, 𝑥 + ⋯

𝐺𝜇𝜈
2 ≃ ,

2
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Three limits 

1. Continuum limit 𝑎 → 0.
Important: taking 𝑎 → 0 with keeping 𝑡 finite.

2. Flow time zero limit 𝑡 → 0.

In general, higher dimensional operators are mixed.

To remove the Irrelevant operators, we need 𝑡 → 0.

3. Volume infinity limit 𝑉 → ∞.

𝑇𝜇𝜈 𝑥, 𝑡, 𝑎 = 𝑇𝜇𝜈 WT
𝑥 + 𝑡 dim6 operator𝑠
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Check list

1. Pressure balance at 𝑇𝑐.

2. Compare the latent heat with derivative method.

3. Lattice regularization dependence in 𝐺𝜇𝜈
2

(clover operator and plaquette)

4. Order of the limiting procedures.
(Lattice spacing 𝑎, Flow time 𝑡, Volume 𝑉)
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Hot phase

Cold phase

Ω :polyakov loop 𝑃:plaquette

Δ 𝜖 + 𝑝

𝑇4
=

𝜖 + 𝑝

𝑇4 hot −
𝜖 + 𝑝

𝑇4 cold

Δ 𝜖 − 3𝑝

𝑇4
=

𝜖 − 3𝑝

𝑇4 hot −
𝜖 − 3𝑝

𝑇4 cold

Calculate 𝜖 + 𝑝 /𝑇4, 𝜖 − 3𝑝 /𝑇4 in the hot and cold phases, separately.

We classify the configurations into hot and cold phases by the value 
of Polyakov loop on the first order phase transition point.

There are few intermediate states.
We omit the intermediate states by 
choosing a large V in this 
calculation.

Two phases at the first order phase transition
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Simulation parameters

Lattice size
𝑁𝑠
𝟑 ×𝑵𝒕

Range of 𝜷 Total number of 
configurations

Measurementof 
flowed operator

483 × 8 6.056-6.067 1,200,000 60,000

643 × 8 6.0585-6.065 4,600,000 230,000

643 × 12 6.332-6.339 690,000 23,000

963 × 12 6.33-6.339 1,500,000 50,000

963 × 16 6.543-6.547 1,500,000 15,000

1283 × 16 6.543-6.547 570,000 5,700

Pseudo-heat bath method.
Generate configurations at 3 to 5 points near 𝑇𝑐.
We performed gradient flow observables  every 20-100.

Simulation of SU(3) gauge theory

12



Latent heat and pressure gap with
the clover operator

- We plot results of three lattice spacings at a fixed aspect ratio 𝑁𝑠/𝑁𝑡 = 8.

- The physical volume 𝑉 is the same because 𝑁𝑠/𝑁𝑡 =
3
𝑉𝑇𝑐.

- When flow time increases, lattice discretization error decreases.
- In the region of 𝑡𝑇𝑐

2 > 0.008 the results are well linear.

Δ 𝜖 + 𝑝 /𝑇4

𝑁𝑡𝑎 = 𝑇𝑐
−1

𝑁𝑠𝑎 =
3
𝑉
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Extrapolation to the continuum limit

- Blue points are results of lattices with the same volume, at 𝑁𝑡 = 8,12,16.
- We fit these data by a linear function of 1/𝑁𝑡

2 ∝ 𝑎𝑡
2.

- Magenta line is the fit line.
- The symbol on the vertical axis is the result in the continuum limit.

Δ 𝜖 − 3𝑝 /𝑇4 Δ 𝜖 + 𝑝 /𝑇4

𝑡𝑇𝑐
2 = 0.013

1/𝑁𝑡
2 ∝ 𝑎𝑡

2 1/𝑁𝑡
2 ∝ 𝑎𝑡

2

𝑁𝑡 = 16

𝑁𝑡 = 12

𝑁𝑡 = 8

𝑁𝑡 = 8

𝑁𝑡 = 12
𝑁𝑡 = 16
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Extrapolation to the continuum limit

- Magenta lines are the values in the continuum limit.
- These results are well linear at 𝑡𝑇𝑐

2 > 0.004.
- Lattice artifact remains at small 𝑡.

Δ 𝜖 − 3𝑝 /𝑇4
Δ 𝜖 + 𝑝 /𝑇4
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Vanishing pressure gap

Δ 𝜖 + 𝑝 /𝑇4

Δ 𝜖 − 3𝑝 /𝑇4

Continuum limit:
𝑁𝑠

𝑁𝑡
= 8

- We fit these data by linear function of 𝑡 in 𝑡𝑇𝑐
2 > 0.004.

- The values in the 𝑡 → 0 limit are roughly consistent within the statistical errors.
- It suggests that  Δ𝑝 → 0.
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Δ 𝜖 + 𝑝 /𝑇4

Δ 𝜖 − 3𝑝 /𝑇4

Continuum limit:
𝑁𝑠

𝑁𝑡
= 6

Vanishing pressure gap

The two values are consistent within the statistical errors.
It suggests that  Δ𝑝 → 0.
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Alternative analysis: 𝑡 → 0 extrapolation at finite 𝑎

- Cyan (e-3p) and magenta (e+p) symbols are the result of 𝑡 → 0 after 𝑎 → 0.
- 𝑡 → 0 extrapolation at each finite 𝑎. We then extrapolate them 𝑎 → 0

by blue and red fitting line.
- Two results of 𝑎 → 0 first and 𝑡 → 0 first are consistent within errors.
- The order of 𝑎 → 0 and 𝑡 → 0 are exchangeable.

Δ 𝜖 + 𝑝 /𝑇4

𝑁𝑡 = 16

Δ 𝜖 − 3𝑝 /𝑇4
𝑁𝑡 = 12

𝑁𝑡 = 8

𝑁𝑠/𝑁𝑡 = 8
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- 𝐺𝜇𝜈 is calculated by paquette (blue) and clover (red).

- The plaquette results approach the clover results at large 𝑡𝑇𝑐
2 where lattice 

artifacts are expected to suppressed.
- The linear window is narrower when we adopt plaquette operator.

𝑁𝑠
𝑁𝑡

= 8

Δ 𝜖 − 3𝑝

𝑇4

Comparison with the results of palquette operator

Δ 𝜖 + 𝑝

𝑇4
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Thermodynamics quantities for each lattice

Δ 𝜖 − 3𝑝 /𝑇4 Δ 𝜖 + 𝑝 /𝑇4

Result of derivative method

The result approaches the result of the derivative 
method as the volume increases

𝑁𝑡
𝑁𝑠

=
1

3
𝑉𝑇𝑐



ÅUsing the gradient flow method we calculate the latent 
heat and the pressure gap at the first order phase 
transition of SU(3) gauge theory.
ÅThe order of 𝑎 → 0 and 𝑡 → 0 are exchangeable.
ÅWhen lattice spacing is small, Δ𝑝 = 0 at finite 𝑉. 
ÅThe statistical errors by gradient flow are very small in 

comparison with the results by the derivative method.
ÅThe latent heat by the gradient flow method approaches 

that by the derivative method as the volume increases.

Conclusion & Outlook

Gradient flow method works well.


